Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.950
Filtrar
1.
Sci Data ; 11(1): 380, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615081

RESUMO

Rice blast caused by Pyricularia oryzae (syn., Magnaporthe oryzae) was one of the most destructive diseases of rice throughout the world. Genome assembly was fundamental to genetic variation identification and critically impacted the understanding of its ability to overcome host resistance. Here, we report a gapless genome assembly of rice blast fungus P. oryzae strain P131 using PacBio, Illumina and high throughput chromatin conformation capture (Hi-C) sequencing data. This assembly contained seven complete chromosomes (43,237,743 bp) and a circular mitochondrial genome (34,866 bp). Approximately 14.31% of this assembly carried repeat sequences, significantly greater than its previous assembled version. This assembly had a 99.9% complement in BUSCO evaluation. A total of 14,982 genes protein-coding genes were predicted. In summary, we assembled the first telomere-to-telomere gapless genome of P. oryzae, which would be a valuable genome resource for future research on the genome evolution and host adaptation.


Assuntos
Ascomicetos , Genoma Fúngico , Ascomicetos/genética , Cromatina , Telômero/genética
2.
Mycopathologia ; 189(3): 32, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622365

RESUMO

The rare fungus Candida saopaulonensis has never been reported to be associated with human infection. We report the draft genome sequence of the first clinical isolate of C. saopaulonensis, which was isolated from a very premature infant with sepsis. This is the first genome assembly reaching the near-complete chromosomal level with structural annotation for this species, opening up avenues for exploring evolutionary patterns and genetic mechanisms of pathogenesis.


Assuntos
Candida , Sepse , Humanos , Recém-Nascido , Candida/genética , Genoma Fúngico , Recém-Nascido Prematuro
3.
Cell Rep Methods ; 4(4): 100761, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653205

RESUMO

The international Synthetic Yeast Project (Sc2.0) aims to construct the first synthetic designer eukaryote genome. Over the past few years, the Sc2.0 consortium has achieved several significant milestones by synthesizing and characterizing all 16 nuclear chromosomes of the yeast Saccharomyces cerevisiae, as well as a 17thde novo neochromosome containing all nuclear tRNA genes. In this commentary, we discuss the recent technological advances achieved in this project and provide a perspective on how they will impact the emerging field of synthetic genomics in the future.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Genoma Fúngico/genética , Biologia Sintética/métodos , Genômica/métodos , Engenharia Genética/métodos
4.
ACS Synth Biol ; 13(4): 1116-1127, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38597458

RESUMO

Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.


Assuntos
Cromossomos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Genótipo , Fluxo de Trabalho , Rearranjo Gênico , Genoma Fúngico/genética
5.
Microbiol Spectr ; 12(4): e0358223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488392

RESUMO

Saccharomyces cerevisiae (baker's yeast, budding yeast) is one of the most important model organisms for biological research and is a crucial microorganism in industry. Currently, a huge number of Saccharomyces cerevisiae genome sequences are available at the public domain. However, these genomes are distributed at different websites and a large number of them are released without annotation information. To provide one complete annotated genome data resource, we collected 2,507 Saccharomyces cerevisiae genome assemblies and re-annotated 2,506 assemblies using a custom annotation pipeline, producing a total of 15,407,164 protein-coding gene models. With a custom pipeline, all these gene sequences were clustered into families. A total of 1,506 single-copy genes were selected as marker genes, which were then used to evaluate the genome completeness and base qualities of all assemblies. Pangenomic analyses were performed based on a selected subset of 847 medium-high-quality genomes. Statistical comparisons revealed a number of gene families showing copy number variations among different organism sources. To the authors' knowledge, this study represents the largest genome annotation project of S. cerevisiae so far, providing rich genomic resources for the future studies of the model organism S. cerevisiae and its relatives.IMPORTANCESaccharomyces cerevisiae (baker's yeast, budding yeast) is one of the most important model organisms for biological research and is a crucial microorganism in industry. Though a huge number of Saccharomyces cerevisiae genome sequences are available at the public domain, these genomes are distributed at different websites and most are released without annotation, hindering the efficient reuse of these genome resources. Here, we collected 2,507 genomes for Saccharomyces cerevisiae, performed genome annotation, and evaluated the genome qualities. All the obtained data have been deposited at public repositories and are freely accessible to the community. This study represents the largest genome annotation project of S. cerevisiae so far, providing one complete annotated genome data set for S. cerevisiae, an important workhorse for fundamental biology, biotechnology, and industry.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Variações do Número de Cópias de DNA , Genômica , Anotação de Sequência Molecular
6.
Microbiol Spectr ; 12(4): e0398023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38445873

RESUMO

Modern taxonomic classification is often based on phylogenetic analyses of a few molecular markers, although single-gene studies are still common. Here, we leverage genome-scale molecular phylogenetics (phylogenomics) of species and populations to reconstruct evolutionary relationships in a dense data set of 710 fungal genomes from the biomedically and technologically important genus Aspergillus. To do so, we generated a novel set of 1,362 high-quality molecular markers specific for Aspergillus and provided profile Hidden Markov Models for each, facilitating their use by others. Examining the resulting phylogeny helped resolve ongoing taxonomic controversies, identified new ones, and revealed extensive strain misidentification (7.59% of strains were previously misidentified), underscoring the importance of population-level sampling in species classification. These findings were corroborated using the current standard, taxonomically informative loci. These findings suggest that phylogenomics of species and populations can facilitate accurate taxonomic classifications and reconstructions of the Tree of Life.IMPORTANCEIdentification of fungal species relies on the use of molecular markers. Advances in genomic technologies have made it possible to sequence the genome of any fungal strain, making it possible to use genomic data for the accurate assignment of strains to fungal species (and for the discovery of new ones). We examined the usefulness and current limitations of genomic data using a large data set of 710 publicly available genomes from multiple strains and species of the biomedically, agriculturally, and industrially important genus Aspergillus. Our evolutionary genomic analyses revealed that nearly 8% of publicly available Aspergillus genomes are misidentified. Our work highlights the usefulness of genomic data for fungal systematic biology and suggests that systematic genome sequencing of multiple strains, including reference strains (e.g., type strains), of fungal species will be required to reduce misidentification errors in public databases.


Assuntos
Aspergillus , Fungos , Filogenia , Fungos/genética , Aspergillus/genética , Evolução Biológica , Genômica , Genoma Fúngico
7.
BMC Genomics ; 25(1): 304, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519886

RESUMO

Fusarium, a member of the Ascomycota fungi, encompasses several pathogenic species significant to plants and animals. Some phytopathogenic species have received special attention due to their negative economic impact on the agricultural industry around the world. Traditionally, identification and taxonomic analysis of Fusarium have relied on morphological and phenotypic features, including the fungal host, leading to taxonomic conflicts that have been solved using molecular systematic technologies. In this work, we applied a phylogenomic approach that allowed us to resolve the evolutionary history of the species complexes of the genus and present evidence that supports the F. ventricosum species complex as the most basal lineage of the genus. Additionally, we present evidence that proposes modifications to the previous hypothesis of the evolutionary history of the F. staphyleae, F. newnesense, F. nisikadoi, F. oxysporum, and F. fujikuroi species complexes. Evolutionary analysis showed that the genome GC content tends to be lower in more modern lineages, in both, the whole-genome and core-genome coding DNA sequences. In contrast, genome size gain and losses are present during the evolution of the genus. Interestingly, core genome duplication events positively correlate with genome size. Evolutionary and genome conservation analysis supports the F3 hypothesis of Fusarium as a more compact and conserved group in terms of genome conservation. By contrast, outside of the F3 hypothesis, the most basal clades only share 8.8% of its genomic sequences with the F3 clade.


Assuntos
Fusarium , Fusarium/genética , Genoma Fúngico , Genômica , Tamanho do Genoma , Filogenia , Doenças das Plantas/microbiologia
8.
Database (Oxford) ; 20242024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502608

RESUMO

Fungal secondary metabolites are not necessary for growth, but they are important for fungal metabolism and ecology because they provide selective advantages for competition, survival and interactions with the environment. These various metabolites are widely used as medicinal precursors and insecticides. Secondary metabolism genes are commonly arranged in clusters along chromosomes, which allow for the coordinate control of complete pathways. In this study, we created the Fungal Gene Cluster Database to store, retrieve, and visualize secondary metabolite gene cluster information across fungal species. The database was created by merging data from RNA sequencing, Basic Local Alignment Search Tool, genome browser, enrichment analysis and the R Shiny web framework to visualize and query putative gene clusters. This database facilitated the rapid and thorough examination of significant gene clusters across fungal species by detecting, defining and graphically displaying the architecture, organization and expression patterns of secondary metabolite gene clusters. In general, this genomic resource makes use of the tremendous chemical variety of the products of these ecologically and biotechnologically significant gene clusters to our further understanding of fungal secondary metabolism. Database URL: https://www.hebaubioinformatics.cn/FungalGeneCluster/.


Assuntos
Genes Fúngicos , Genoma Fúngico , Metabolismo Secundário/genética , Genômica , Família Multigênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
9.
PLoS Genet ; 20(3): e1011207, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498573

RESUMO

Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.


Assuntos
Basidiomycota , Grão Comestível , Grão Comestível/genética , Basidiomycota/genética , Genômica , Genoma Fúngico/genética , Reprodução , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
10.
Nat Commun ; 15(1): 1701, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402218

RESUMO

The spatial organization of eukaryotic genomes is linked to their biological functions, although it is not clear how this impacts the overall evolution of a genome. Here, we uncover the three-dimensional (3D) genome organization of the phytopathogen Verticillium dahliae, known to possess distinct genomic regions, designated adaptive genomic regions (AGRs), enriched in transposable elements and genes that mediate host infection. Short-range DNA interactions form clear topologically associating domains (TADs) with gene-rich boundaries that show reduced levels of gene expression and reduced genomic variation. Intriguingly, TADs are less clearly insulated in AGRs than in the core genome. At a global scale, the genome contains bipartite long-range interactions, particularly enriched for AGRs and more generally containing segmental duplications. Notably, the patterns observed for V. dahliae are also present in other Verticillium species. Thus, our analysis links 3D genome organization to evolutionary features conserved throughout the Verticillium genus.


Assuntos
Genômica , Plantas , Plantas/genética , Elementos de DNA Transponíveis/genética , Cromatina/genética , Evolução Molecular , Genoma Fúngico/genética
11.
New Phytol ; 242(2): 610-625, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402521

RESUMO

Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.


Assuntos
Fusarium , Genoma Fúngico , Duplicações Segmentares Genômicas , Fusarium/genética , Especificidade de Hospedeiro , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
12.
Infect Genet Evol ; 120: 105575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403034

RESUMO

Mucormycosis is receiving much more attention because of its high morbidity and extremely high mortality rate in immunosuppressed populations. In this study, we isolated a Cunnignhamella bertholletiae Z2 strain from a skin lesion of a 14 year, 9 months old girl with acute lymphoblastic leukemia who die of infection from the Z2 strain. Genome sequencing was performed after isolation and amplification of the Z2 strain to reveal potential virulence factors and pathogenic mechanisms. The results showed that the genome size of the Z2 strain is 30.9 Mb with 9213 genes. Mucoral specific virulence factor genes found are ARF, CalN, and CoTH, while no gliotoxin biosynthesis gene cluster was found, which is a known virulence factor in Aspergillus fumigatus adapted to the environment. The Z2 strain was found to have 69 cytochrome P450 enzymes, which are potential drug resistant targets. Sensitivity testing of Z2 showed it was only inhibited by amphotericin B and posaconazole. Detailed genomic information of the C. bertholletiae Z2 strain may provide useful data for treatment.


Assuntos
Antifúngicos , Cunninghamella , Sistema Enzimático do Citocromo P-450 , Genoma Fúngico , Mucormicose , Sistema Enzimático do Citocromo P-450/genética , Mucormicose/microbiologia , Feminino , Humanos , Cunninghamella/genética , Antifúngicos/farmacologia , Adolescente , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Filogenia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
13.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354778

RESUMO

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Assuntos
Celulose 1,4-beta-Celobiosidase , Ensaios Enzimáticos , Genoma Fúngico , Mutação , Engenharia de Proteínas , Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/classificação , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Genoma Fúngico/genética , Engenharia de Proteínas/métodos , Especificidade por Substrato , Talaromyces/enzimologia , Talaromyces/genética , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/metabolismo , Biocatálise
14.
Front Cell Infect Microbiol ; 14: 1329438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362496

RESUMO

Candida albicans SC5314 is the most-often used strain for molecular manipulation of the species. The SC5314 reference genome sequence is the result of considerable effort from many scientists and has advanced research into fungal biology and pathogenesis. Although the resource is highly developed and presented in a phased diploid format, the sequence includes gaps and does not extend to the telomeres on its eight chromosome pairs. Accurate SC5314 genome assembly is complicated by the presence of extensive repeated sequences and considerable allelic length variation at some loci. Advances in genome sequencing technology provide the tools to obtain highly accurate long-read data that span even the most-difficult-to-assemble genome regions. Here, we describe derivation of a PacBio HiFi data set and creation of a collapsed haploid telomere-to-telomere assembly of the SC5314 genome (ASM3268872v1) that revealed previously unknown features of the strain. ASM3268872v1 subtelomeric distances were up to 19 kb larger than in the reference genome and revealed a family of highly conserved DNA helicase-encoding genes at 10 of the 16 chromosome ends. We also describe alignments of individual HiFi reads to deduce accurate diploid sequences for the most notoriously difficult-to-assemble C. albicans genes: the agglutinin-like sequence (ALS) gene family. We provide a tutorial that demonstrates how the HiFi reads can be visualized to explore any region of interest. Availability of the HiFi reads data set and the ASM3268872v1 comparative guide assembly will streamline research efforts because accurate diploid sequences can be derived using simple in silico methods rather than time-consuming laboratory-bench approaches.


Assuntos
Candida albicans , Genoma Fúngico , Candida albicans/genética , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Telômero/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
15.
Med Mycol ; 62(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38414264

RESUMO

Candida auris poses threats to the global medical community due to its multidrug resistance, ability to cause nosocomial outbreaks and resistance to common sterilization agents. Different variants that emerged at different geographical zones were classified as clades. Clade-typing becomes necessary to track its spread, possible emergence of new clades, and to predict the properties that exhibit a clade bias. We previously reported a colony-Polymerase Chain Reaction-based, clade-identification method employing whole genome alignments and identification of clade-specific sequences of four major geographical clades. Here, we expand the panel by identifying clade 5 which was later isolated in Iran, using specific primers designed through in silico analyses.


Candida auris, a multidrug-resistant fungal pathogen, evolves as distinct geographical clades. We describe the identification of clade 5 specific DNA sequence, which was used to design primers that distinguished clade 5 from other clades, adding to the panel of the clade-identification system.


Assuntos
Candida , Candidíase , Animais , Candida/genética , Candidíase/epidemiologia , Candidíase/veterinária , Candida auris , Reação em Cadeia da Polimerase/veterinária , Genoma Fúngico , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana/veterinária
16.
G3 (Bethesda) ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38214578

RESUMO

Mycophilic or fungicolous fungi can be found wherever fungi exist since they are able to colonize other fungi, which occupy a diverse range of habitats. Some fungicolous species cause important diseases on Basidiomycetes, and thus, they are the main reason for the destruction of mushroom cultivations. Nonetheless, despite their ecological significance, their genomic data remain limited. Cladobotryum mycophilum is one of the most aggressive species of the genus, destroying the economically important Agaricus bisporus cultivations. The 40.7 Mb whole genome of the Greek isolate ATHUM6906 is assembled in 16 fragments, including the mitochondrial genome and 2 small circular mitochondrial plasmids, in this study. This genome includes a comprehensive set of 12,282 protein coding, 56 rRNA, and 273 tRNA genes. Transposable elements, CAZymes, and pathogenicity related genes were also examined. The genome of C. mycophilum contained a diverse arsenal of genes involved in secondary metabolism, forming 106 biosynthetic gene clusters, which renders this genome as one of the most BGC abundant among fungicolous species. Comparative analyses were performed for genomes of species of the family Hypocreaceae. Some BGCs identified in C. mycophilum genome exhibited similarities to clusters found in the family Hypocreaceae, suggesting vertical heritage. In contrast, certain BGCs showed a scattered distribution among Hypocreaceae species or were solely found in Cladobotryum genomes. This work provides evidence of extensive BGC losses, horizontal gene transfer events, and formation of novel BGCs during evolution, potentially driven by neutral or even positive selection pressures. These events may increase Cladobotryum fitness under various environmental conditions and potentially during host-fungus interaction.


Assuntos
Genoma Fúngico , Hypocreales , Hypocreales/genética , Genômica , Família Multigênica
17.
BMC Genomics ; 25(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166640

RESUMO

BACKGROUND: Penicillium chrysogenum is a filamentous fungal species with diverse habitats, yet little is known about its genetics in adapting to extreme subseafloor sedimental environments. RESULTS: Here, we report the discovery of P. chrysogenum strain 28R-6-F01, isolated from deep coal-bearing sediments 2306 m beneath the seafloor. This strain possesses exceptional characteristics, including the ability to thrive in extreme conditions such as high temperature (45 °C), high pressure (35 Mpa), and anaerobic environments, and exhibits broad-spectrum antimicrobial activity, producing the antibiotic penicillin at a concentration of 358 µg/mL. Genome sequencing and assembly revealed a genome size of 33.19 Mb with a GC content of 48.84%, containing 6959 coding genes. Comparative analysis with eight terrestrial strains identified 88 unique genes primarily associated with penicillin and aflatoxins biosynthesis, carbohydrate degradation, viral resistance, and three secondary metabolism gene clusters. Furthermore, significant expansions in gene families related to DNA repair were observed, likely linked to the strain's adaptation to its environmental niche. CONCLUSIONS: Our findings provide insights into the genomic and biological characteristics of P. chrysogenum adaptation to extreme anaerobic subseafloor sedimentary environments, such as high temperature and pressure.


Assuntos
Penicillium chrysogenum , Penicillium chrysogenum/genética , Genômica , Genoma Fúngico , Genes Fúngicos , Penicilinas/metabolismo
18.
Microbiol Spectr ; 12(2): e0340023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193680

RESUMO

Fungal secondary metabolites (SMs) contribute to the diversity of fungal ecological communities, niches, and lifestyles. Many fungal SMs have one or more medically and industrially important activities (e.g., antifungal, antibacterial, and antitumor). The genes necessary for fungal SM biosynthesis are typically located right next to each other in the genome and are known as biosynthetic gene clusters (BGCs). However, whether fungal SM bioactivity can be predicted from specific attributes of genes in BGCs remains an open question. We adapted machine learning models that predicted SM bioactivity from bacterial BGC data with accuracies as high as 80% to fungal BGC data. We trained our models to predict the antibacterial, antifungal, and cytotoxic/antitumor bioactivity of fungal SMs on two data sets: (i) fungal BGCs (data set comprised of 314 BGCs) and (ii) fungal (314 BGCs) and bacterial BGCs (1,003 BGCs). We found that models trained on fungal BGCs had balanced accuracies between 51% and 68%, whereas training on bacterial and fungal BGCs had balanced accuracies between 56% and 68%. The low prediction accuracy of fungal SM bioactivities likely stems from the small size of the data set; this lack of data, coupled with our finding that including bacterial BGC data in the training data did not substantially change accuracies currently limits the application of machine learning approaches to fungal SM studies. With >15,000 characterized fungal SMs, millions of putative BGCs in fungal genomes, and increased demand for novel drugs, efforts that systematically link fungal SM bioactivity to BGCs are urgently needed.IMPORTANCEFungi are key sources of natural products and iconic drugs, including penicillin and statins. DNA sequencing has revealed that there are likely millions of biosynthetic pathways in fungal genomes, but the chemical structures and bioactivities of >99% of natural products produced by these pathways remain unknown. We used artificial intelligence to predict the bioactivities of diverse fungal biosynthetic pathways. We found that the accuracies of our predictions were generally low, between 51% and 68%, likely because the natural products and bioactivities of only very few fungal pathways are known. With >15,000 characterized fungal natural products, millions of putative biosynthetic pathways present in fungal genomes, and increased demand for novel drugs, our study suggests that there is an urgent need for efforts that systematically identify fungal biosynthetic pathways, their natural products, and their bioactivities.


Assuntos
Antifúngicos , Produtos Biológicos , Inteligência Artificial , Genoma Fúngico , Vias Biossintéticas/genética , Família Multigênica , Aprendizado de Máquina , Antibacterianos
19.
Microbiol Spectr ; 12(2): e0366923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214524

RESUMO

Microsporidia are obligate intracellular eukaryotic parasites with an extremely broad host range. They have both economic and public health importance. Ploidy in microsporidia is variable, with a few species formally identified as diploid and one as polyploid. Given the increase in the number of studies sequencing microsporidian genomes, it is now possible to assess ploidy levels across all currently explored microsporidian diversity. We estimate ploidy for all microsporidian data sets available on the Sequence Read Archive using k-mer-based analyses, indicating that polyploidy is widespread in Microsporidia and that ploidy change is dynamic in the group. Using genome-wide heterozygosity estimates, we also show that polyploid microsporidian genomes are relatively homozygous, and we discuss the implications of these findings on the timing of polyploidization events and their origin.IMPORTANCEMicrosporidia are single-celled intracellular parasites, distantly related to fungi, that can infect a broad range of hosts, from humans all the way to protozoans. Exploiting the wealth of microsporidian genomic data available, we use k-mer-based analyses to assess ploidy status across the group. Understanding a genome's ploidy is crucial in order to assemble it effectively and may also be relevant for better understanding a parasite's behavior and life cycle. We show that tetraploidy is present in at least six species in Microsporidia and that these polyploidization events are likely to have occurred independently. We discuss why these findings may be paradoxical, given that Microsporidia, like other intracellular parasites, have extremely small, reduced genomes.


Assuntos
Microsporídios , Humanos , Filogenia , Evolução Molecular , Genoma Fúngico , Poliploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...